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STRAIN-GRADIENT EFFECTS AROUND SPHERICAL
INCLUSIONS AND CAVITIES

THOMAS S. CooK and YECHIEL WEITSMAN
Engineering Mechanics Department, The Pennsylvania State University, University Park, Pa.

Abstract—This paper deals with the elastic stress field due to a spherical inclusion or cavity in an infinite exterior
region subjected to spherically symmetric tension at infinity. The results are derived for a potential energy that
depends on strains and strain gradients. Such a potential energy will give rise to both classical stresses and non-
classical hyperstresses. It is shown that the hyperstresses are confined to the vicinity of the interface or free
surface associated with an inclusion or a cavity and are therefore representative of skin effects. The stress
concentration factor, computed on the basis of the hoop stresses around a cavity, is shown to be at large
variance with the classical value.

NOTATION
Equivalent Symbol in
Symbol  [2], Sections 12, 13
é a, micro elasticity modulus
c a, micro elasticity modulus
f 7 micro elasticity modulus
I 1, characteristic measure of strain gradient theory
r, 8 ¢ spherical coordinates
e, e, e, unit vectors in spherical coordinates
ro radius of inclusion or cavity
P P boundary traction
Q Q non-self-equilibrating double traction on boundary
R R self-equilibrating double traction on boundary
P, radial component of Ponr = r,
Pyje tangential component of P on surface 8 = G, atr = r,
Pye circumferential component of P on surface ¢ = ppatr =r,
o B, stress function
n u displacement vector
o positive dimensionless quantity
p =rofl dimensionless characteristic measure
A p i di Lamé moduli in presence of strain-gradient cllects
g, radial strain
Gy tangential stress in spherical coordinates
T magnitude of hydrostatic tension in psi, selected to be unity
R R R R kinematical quantities in strain-gradient theory
ﬁ“’ ﬁm, I‘-‘rrr hyperstresses

Subscripts (or superscripts) 1 and 2 refer to the inclusion and exterior respectively.

INTRODUCTION

IN THIS paper it is assumed that the potential energy of an elastic body is a function of
both strain and strain gradient. The boundary conditions and stress-equations of equili-
brium for such a body were first derived by Toupin [1]. The constitutive equations for the
linear, isotropic, centrosymmetric case were given by Mindlin [2] in three alternative
forms. Mindlin has shown that these various forms lead to a unique system of displace-
ment equations of equilibrium for which he presented a complete solution in terms of
stress functions.
393
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An elastic potential energy which depends on strains and strain gradients will give
rise to classical “Cauchy Stresses” and higher order stress-terms (“Hyperstresses™).
These hyperstresses are couple-stresses and double-stresses, some of which are depicted
in Fig. 1.

For an isotropic, centrosymmetric material the constitutive relations contain five
additional elastic constants (micromoduli) whose dimensions differ from those of the
Lamé constants by the square of length. It is possible to relate certain algebraic combi-
nations of these micromoduli to the Lamé moduli by means of two characteristic length
parameters,

FiG. 1. Some hyperstresses in spherical coordinates.

As already observed on previous occasions [3, 4], the presence of higher-order kine-
matical terms (e.g. strain gradients) in the potential energy function introduces a higher
order contact at the interface between dissimilar materials. The higher order contact
conditions may require the materials to interact across their mutual interface so as to
form a common boundary layer, rather than only an infinitesimally thin common surface
as in the classical case.

The solution to an elasticity problem based upon the strain-gradient theory can be
expressed in three different ways, which depend on the specific form selected for the
potential energy. These forms have been presented by Mindlin ([2), sections 9, 11 and 12).
For convenience it has been decided to follow the third form of Mindlin’s equation ([2],
section 12) because it will lead to a solution that contains only two of the five micromoduli
and involve only one characteristic length. The other forms lead to solutions that depend
on two combinations of all five micromoduli. The reader is referred to [2], especially
sections 913 for a detailed exposition of the strain-gradient theory.

ANALYSIS

Consider a spherical inclusion (or cavity) of radius r = r, in an infinite elastic exterior
region which is subjected to hydrostatic, spherically symmetric tension as shown in Fig. 2.
Assume that the potential energy of the inclusion and the exterior region depends on
strains and strain-gradients. Denote the elastic constants of the inclusion by 4,, u;, I;, ¢1, &,
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FI1G. 2. A spherical inclusion within an infinite region subjected to hydrostatic tension.

and those of the exterior by 4,, us, I3, ¢,, €;.* The relation between these quantities and
their counterparts in [2), section 12, is given in the notation. Let the spherical coordinates
be r, 8, ¢ with unit vectors e,,e,, e,. Due to the complete spherical symmetry the dis-
placement vector is given by

u = u/rle,. 1)
In the following we shall write
ufr) = u

The non-vanishing components of strain are

@)

8r=u’ 60=8¢=

-8

It is found that all rotation gradients vanish so that, following [2], equation 12.2,
we have

Rije = Rip
which yield the following non-vanishing components

”

Ropp = U

. . . . " . W u 3
Krgo = Krpp = Korg = Kgor = Kgrgp = Kppr = 7—;3 3)

where primes denote derivatives with respect to r. Equations (12.7) of {2] yield the follow-
ing non-vanishing components of stresses and hyperstresses

g, = (A+2,u)u’+21;

* Each material possesses, in addition, three micromoduli and a characteristic length which are left unnamed,
since they are irrelevant for what follows.
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, u
O = 04 = Au +2(/1+u);
- ard " 2 7 2
fog = —Heg =flU'+ —u'—5u
r r
- 2 2
Ly = 36(u”+; T -r-ju) + 2cu”

liroo = ﬁrw = f‘m = ﬁoar = f‘¢r¢ =

o = ” 2 4 2 u, u
Hypor = ClU +;u ——;_-iu +2c 7—;2* . (4)

Following [2], equations (12.14), we express the boundary tractions and hypertractions,
on the surface r = ry, in terms of u

u 2 4 4
= ’ 22._ —_— - " —t " —_—d ’ eeed
P, o= (A+2uu' + . 3¢ (u +ru rzu +r3u)

2 6 6
—ZC(u”’+—u”~~5u’+—3u) 5
r r r
R = ﬁrrr (6)
Py=Py=Q =0 )

Expressions (5), (6} and (7) can be obtained by employing Mindlin’s forms I and II ([2],
sections 9 and 11).

The hoop double-tractions fi,e and f,.4, do however depend on the form utilized
since their meaning is distinct in each case. The quantities Py and Py, which are the
counterparts of the traction P,, act on the surfaces 6 = 0, and ¢ = ¢, in the directions
e, and e, respectively and also depend on the specific form being employed. These
quantities represent some kind of resultants of long range and short range forces which
may be of interest in studies of stress concentrations since it is not yet obvious how one
might determine the crucial factor underlying fracture or yield within the scope of strain
gradient theory. Employing form III, we obtain

”

4
Po/o = P¢/¢ = Au' + 2(2. + u)":““ —3é (u"’ +;u") - GCuT. (8)

The solution to our problem can be expressed in terms of uniform triaxial tension
[U,] and stress functions B, which satisfy the equation

(1-PV?3)V3B, =0 )]
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The functions B, which participate in the solution to the present problem are

3
uor l
A+2urd
By, = Ty (10)
3
Bys = 2——A+2“ Tog-m
uor

For a spherically symmetric field the radial displacement u is derived from B, as
follows

2 2
( 2 ,) L A4y, a1

_ Bm “pr _ % 27 g
=3 °+rB° rzB0 2442 °

Inserting (11) into (4), (5) and (6) and denoting & = r/l, p = ry/l one obtains the
following fields: For By, :

3
u= %(—sinh &+ & cosh &)
s .
& = ~5(2 sinh £ —2¢ cosh £ +¢% sinh §)
Torsp2 o :
Gy = r—a[lé sinh &+ 2u(—sinh &+ £ cosh &)]
3

- rp| € .
oo = r—g[l—z(—smh ¢+¢& cosh &)

+21c—z(3f—2 sinh & —3&7! cosh ¢ +sinh 5)]

and, atr =r, (12)
P, = Ap? sinh p+2u(2 sinh p —2p cosh p + p? sinh p)

- 3%(sinh p—2p cosh p + p? sinh p)
—2l£2(—»6p'2 sinh p+6p~* cosh p—2p cosh p + p? sinh p)
R = 310—2(——sinh p+pcosh p)

+210—2(—6p‘2 sinh p +6p~! cosh p —3 sinh p + p cosh p).
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For By,:
1r3
=3
re r . ric . _
& = —r‘g, Og ;_—gll, Hrog “3;29 }55 2
atr =ro, 13)
c -
P = —2(;1+3 Tz—p‘z), R=6lzp 2
For 303:
—-& "3 —;rg 2
u= —e ;5(1+§), g =€ r—3(2+25+f ),
P
Op = —¢ ;3["’15 +2u(1+¢)]
. 1ol € Conpoa mpet
oo = —€ "3 1—2(1+§)—2F(3f +3§7°+1)
and, atr =r, (14
P = —-e""[—Apz—-Zu(2+2p+p2)
c c - -
+35@+2p+pY) =25 (607 +6p 1—2p—p2)]
R= -—e“’[3IC—2(1+p)+2;2~(6p_2+6p'1+3+p):l.
The uniform triaxial field [U,] yields
u= 1 r g = _1 Oy =
3427 T 2y -
g (19)

ﬁm—':O, P,=1, R=O.
Equations (12)(14) contain the quantities /, ¢ and ¢, only two of which are independent
since they are interrelated through the expression ([2], equation (12.16),).
2 _ 3E+2c‘
A+2u
It is advantageous to retain ! as an independent parameter since it appears in the

exponents of equations (12)14). We therefore introduce a dimensionless parameter «
and write

(16)

c = a(A+2u)?

thus (17)

-2
L ; X+ 2p)2.

o
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The quantity « determines the ratio between ¢ and ¢ and so it influences the relations
between the double stresses and the strain-gradients.

Utilizing (17) we now rewrite (4), (5), (8), (12}, {13) and (14) in terms of « and !/ and
express the solution by means of these two independent parameters. Since the nature of
the substitution (17) is strictly algebraic it is possible to restate any result in terms of ¢
and ¢ by resubstitution. Such a need may arise in the reduction to classical theory.
This reduction might necessitate an examination of various iterated limits as ¢ and ¢
approach zero. A study of such limits of results expressed in terms of « and ! by allowing
I — 0 is restricted to the case of ¢ and ¢ approaching zero simultaneously.

The solution to the problem consists of two parts, {S,] and [S,], which apply to the
inclusion and the exterior region, respectively. For the inclusion

[S:] = A[U;]+ B[By,] 0 <r<r) (18)
For the exterior
[S2] = [U3]4C[By,]+ D[Bos] (ro <7 < 00) (19)
There are various admissible sets of boundary conditions at the interface r = ry [3],
[4], (51:
(a) Higher order contact and complete transmissibility of energy
In this case the boundary conditions at r = r,, are

g = 4@ PO
PV = p2) R®M = R?, (20)
Superscripts (1) and (2) refer to the inclusion and exterior region respectively.
Conditions (20} yield four equations in the four unknowns 4, B, C and D. Upon
solving for these coefficients one obtains the following expressions at r = rq:

e ( NV  14p,
1 — .
o} Fi1ka(Az + ) A { Tt 2 1420,

+g-u:;’;l+(3+3pz+p%)m’%—z—] 30
_ 1 1+p,
Ay +2u1) (A2 +2p5) 34, +2p
e Aatyu, 1+p,
A Ay4+2u, 324 +2uy

+20,(9p1 2 sinh p, —9p7 ! cosh p, +4 sinh p, —p, cosh p,] (22)

2) _ 22 N -W
o = dupy e Ao+2p; 34+ 21, A{ Ay +2u,
+(311+2ﬂl+4pg)(3+3pz+ﬂ%)+p%]
(3,12+2m)(3lx+2#1+4#2)] !
U 11+2#1

[4,40% sinh p; — 2uy(sinh py — py cosh pm}

30 = —8pata [—sinh p, +p, cosh p;

S

[3(1 +p2)

+ [2[42 + (23)
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1 At vV 1+
AR . 1 —p2 "2 Ha o -2 P2
ro Hroo a1z € 311 +2#1 A { [

+(3+3p,+p3)

W
} 1 —~20,(9p5 2 7144 }
]+2‘12+2#2[ +p2—205(907*+9p; ' +4+py)]
(24)

2,2 +2,u2

)»2+/12 1 V{322+2ﬂ2

P(2)= P2 —
bo = Saka € Ta+ 203 30,4205 A | Ao+ 20

\
X g BU(+p2)+ B34+ 21 +4p2)3+3p, +p3]

W
2+2u,

+ [—4uyp5 2 +605(A; +212) 3+ 3p; + p3)

i _ 14
| = By + 2020 Ay + 20y + 4ag) + 2y — 360305 iy + 21) | —L2 L (25)
U .2-1 +2/‘1

When I, and [, vanish the quantities p, = ry/l; and p, = ry/l, tend to infinity. In this
case we obtain

lim (lim o) — 3428341+ 200)+ 605034, +2p15)
P20 P w (3A24+2u,) (34, + 20, +4u,)

This value of o§® agrees with classical theory. In (21)~(25) we used the following
abbreviated forms:

N = sinh p, — p, cosh p,

|4
U = 32.2“{"‘2”2 -‘3!11 “2”1
V = 3sinh p; —3p, cosh p; + p? sinh p, (26)
Ay+2p
- 2727002 N -2
W = 4a,p3 T+ 20, N —4a,p;

and

3h+21; Ayt iy
34, +2uy A4 24,

|4
A =gy, e 5{[3(](1 +p2)

+(324 + 24y +4p2) 3+ 3p2 + D)) PRy
2

1+

Note that whenever 34,+2u, = 34, +2u, (ie. U = 0) the double stresses vanish
regardiess of any discontinuity in the micromoduli.
(b) Kinematical contact as in classical elasticity and partial transmissibility of energy

It is possible to consider boundary conditions in which the strains are discontinuous
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at the interface. From the kinematical point of view such a contact resembles the classical
notion of a bond. Even so, for a non planar boundary the solution is found to differ from
that obtained in classical elasticity. Let the boundary conditions at r = r, be

u) = 4@ PO = p@ R =0 R =0 28)

Employing (28) to solve for A4, B, C and D in (18) and (19) and utilizing the principle
of superposition, we obtain the following expressions at r = r

oy P2ty 1 K -
1} — P2 2 2 _ 2 1 4 2
0§ Hz € 1,128, A‘{3X,2+2 2[ +pa+40,0,
x(3+3py + pA1+ Baypr (1 +p) + K1 +pz—4az)} (29)
_ 1 Aytpy 1 _
(2) — P2 2 2 1 2
) Ha€ 3,428, i, + 2, A {#z[ +py+4a,0;

X(3+43p2+ p3)]+ 30207 2325+ 2p) (1 +p2) + 34, +2y)

3Aa+2u; - 32, — 244 Ha
1
3,428, ( +p2)

+oc2(312+2,u2)]} (30)

_2 3).2"*’2‘12“‘3.11 2;11
ATP? (31, + 21 Ghy + 2)

x(1 4 py)(5 —4day) (31

(14 py +4day)+

1 = —
— B3 = duz0,(As +py) e —

-.‘

where

1 Az +pa
34+2uy A+ 2u,

+3a,0; 2(33'2 +2p2)(1 + o) + 3321 + 241 ) (1 + p5 +4a,)} (32)

In this case the coefficient B vanishes so that no hyperstresses develop within the in-
clusion. The hyperstresses vanish in the exterior when 4, +2u; = 4, +2pu,, regardless of
the values of [, I, «, and a,.

The results of this section do not depend on a; and p, and a reduction to classical
results is effected by taking a single limit. We obtain

lim 0-32) e 0'82)"“““1

Al = pye {2l 1+ p2 + 420723+ 3p, +p3)]

Pr—r o
(c) Cavity
For a cavity the boundary conditions at r = r, are
P® =0, R® =9, (33)

The solution is given by (19) and yields the following values for the coefficients C
and D:

C< 1 K2 1
T 124, &y Ay +2p,

e "2 p31+py+4ayp; 2(3+302+Pz)] (34)
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1 Ha
D=—. —_"2 35
Ac 2(42+2p,) %9
where
A= —F2_cmr| L2 o014 p,) 48,3+ 30, +03)
¢ A +2u, 6a, 2 2The
+4032, +2u) (1 + Pz)] (36)
(2 )
lr i Qy208 \
K i
1-6 ~ Tos
(B — — = —— - _._.__‘_..__...._.__...c'.?ﬂiﬂl _____ —————— e -
a°03
4
|
3 _Qp09
|-zr——-
ol p—
v ; ‘ 3 O 10 2 13 R .,

FI1G. 3. Values of a¥/T at the surface r = r, of the cavity versus p, with 4; = 2u,.

o2

o]

2 4 [ 8 10 12 14 16 18 F,
FiG. 4. Values of — 3)/r, T at the surface r = r,, of the cavity versus p, with 1, = 2u,.
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FiG. 5. Values of PZ)/T at the surface r = r, of the cavity versus p, with A; = 2u,.

E{
(1)
%
¥
i
Pug
T
ol 2z 3 [ 4
s v — To
T
—.2

FiG. 6. Field values of oi/T, a{?*sskal/T and J3)/r, T for a cavity versus r/r, with p; = 2, 4, = 2p,.
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At r = ry we obtain the following expressions:

1 -
o) = X Tt izz e [ﬁ Z(1+p2)+HAs + 20005 2(3+3P2+P2)] (37)
i
¢ - =3 —4a
" 1) 124, (14 pa)(5—4a3) (38)
P = 1w e?2 p3 [ (14 py)+aap; Hha+ 202)3+3p5 + p2) (39
A Ayt 2 T B

Upon taking the limit as p, — 0, we obtain the classical result o> =
The dependence of ¢, ji2) and P at r = r, upon p, and «, is shown in Figs. 3, 4
and 5.

In Fig. 3 o{? is the classical, short-range hoop-stress as influenced by strain-gradients.
It is the same for all three forms of the theory.

In Fig 4 i) represents one combination of long range forces (the self-equilibrating
double-stresses as defined in form III) across a meridional section. Hyperstresses g com-
puted on the basis of the other two forms of the strain-gradient theory would represent
a different combination of such forces and couple-stresses. Which of these combinations,
if any, might be of importance, in a criterion of yielding or fracture, is not known.

The quantity P,y depicted in Fig. 5 is o, plus a certain combination of gradients of
long range forces. The corresponding P from one of the other forms might, in general,
represent g, plus another combination of gradients of long range forces. Again, which of
these, if any, might be of importance is not known.

The variation of 6§ and (1/r,)fiZ) versus the dimensionless distance r/r, is compared
with the classical case in Fig. 6.

CONCLUSIONS

The results indicate that the hyperstresses are largely confined to the interface r = r,.
Upon expanding the expressions for /i,g9 in power series one obtains the forms

A8 = ayr+arttart+ ... (40)
By = byr~ g (byr - bar 34 byr 24 .. )e " {41)

where ay, Gy, ... by, by, ... are constants.

The quantity ji,g attains its largest value at r = r, and decreases very sharply as r
increases. It is worth noting that in the present three dimensional case this decrease is
characterized by a fourth power term (see equation (41)) in contrast to a third power
term that dominates the decrease of [i,4e in a two-dimensional case [4].

It is observed from Fig. 3 that the magnitude of the hoop-stresses at the surface of
the cavity, which represent the stress concentration factor, differs substantially from the
classical value. This difference remains significant even for large values of p,. Moreover,
the classical theory does not provide an upper bound for the stress concentration factor,
and underestimates its magnitude for the physically feasible case of large p,.

For a reduction to classical theory it is necessary to let ¢y, ¢,, ¢;, and ¢, approach
zero (such a reduction will be also achieved by letting p, and p, tend to infinity. In this
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case, however, ¢ and ¢ will approach zero simultaneously for each material). This process
indeed effects a smooth reduction to the classical results for a cavity and an inclusion
with kinematical contact as in classical theory. This reduction does not occur in a straight
forward manner when a higher order contact prevails at the interface between the in-
clusion and the exterior region, because a contact of this nature demands continuity of
the strain ¢, at r = r,. The boundary conditions representing this non-classical bond are
not likely to be completely eliminated when the micromoduli approach zero. In this case
the limiting values of solutions to problems in strain-gradient theory should not be
expected to agree with the classical results.
In the present problem the classical strains at the interface r = rq are

3(A; +2p,)

85' 1)classical _
(3A2+2u2) (341 +2p, +4u,) )
g(Detassical _ 3341 +2p, —24y)
’ (342 +2p,) (341 +2p, +4u,)
Their ratio is
(1)classical
&, /12 + 2[12 (43)

E:Z)clauicnl:’ 3, +2p,— 24,

In strain-gradient theory with higher order contact at r = r, equation (20), yields

gv
=1
&
which contradicts (43).

When both p; and p, tend to infinity in the strain-gradient solution, the equality of
the radial strains at r = r, is maintained

=P =,
but their value depends on the limiting process followed. We find

lim (hm 8,) = 6$2)c|assical
P20 py o B
This limiting process leads to a classical exterior field, with classical o4 and &2, but
yields non-classical values in the interior. By reversing the limiting process we obtain
im (hm Er) - sil)classical
P20 Py =
and so recover the classical interior field. In this case we obtain non-classical values in
the exterior.
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Résumé—Cette étude traite du domaine de la tension élastique due & une inclusion sphérique ou une cavité
dans une région extérieure infinie soumise A une tension sphérique symétrique a Pinfini. Les résultats sont
dérivés pour une énergie potentielle qui dépend des tensions et des pentes de tension. Une telle energie potentielle
fera naitre des tensions classiques et des hypertensions non-classiques. Il est démontré que les hypertensions sont
confinées aux vicinités de I'interface ou surface libre associée 4 une inclusion ou une cavité et sont en consé-
quent representatifs des effets de surface. Le facteur de concentration de tension, calculé sur la base de la
tension en cercle autour d’une cavité, est prouvé étre en grand désaccord avec la valeur ¢lassique

Zusammenfassang—Diese Abhandlung beschiftigt sich mit dem elastischen Spannungsfeld, veranlasst bei
einem sphirischen Einschluss oder Aush6lung in einem unendlichen Ausseren Gebiet, welches einer sphirischen
symmetrischen Spannung im Unendlichen unterworfen ist. Die Ergebnisse sind fiir eine potentielle Energie
abgeleitet, welche von Beanspruchungen und Beanspruchungsgefillen abhidngig ist. So eine potentielle Energie
fiihrt zu klassischen Beanspruchungen und zu nicht-klassischen Hyperbeanspruchungen. Es wird gezeigt dass
die Hyperbeanspruchungen zu der Nihe der Grenzflichen der freien Oberfliche mit cinem Einschluss oder
einer Aushohlung beschrinkt sind und daher ein Grenzschicht Effekt sind. Es wird fernerhin gezeigt, dass der
Konzentrations Beanspruchungsfaktor, berechnet auf der Grundlage der Randbeanspruchung ringsum einer
Aushohlung, von klassischen Wert sehr verschieden ist.

AGcTpakT ~37Ta CTaTh PACCMATPHBACT MOJNE YNPYroro HaNpsOKEHHs, NPOMCXOAALUEE OT CPEePHYECKOro
BKJIIOYEHHA HIIH OT NOJIOCTH B GECKOHEYHOM BHELIIHEM paHoHe, HOABEPTrHYTOM CHEPHYECKH CHMMETPHYHOMY
HanpAkKeHHIO B GeCKOHEYHOCTH, Pe3ynbTaThi BHIBOOATCA AJIA NOTEHUHAIBHON SHEPIHH, KOTOPAS 3aBHCHT
OT HanpsXCHUH H OT TPAIHEHTOB HaNpskeHHA. Taxas NOTEHUMANLHAA SHEPTHA JAET HAYANNO, KAK KJIACCH-
YECKMM HANPAXKCHUAM, TAK H HEKNACCHYECKUM THNEPHANPAXKEHHAM. YKa3bIBAETCH, YTO THNEPHANPANKCHHA
OTPaHHYMBAIOTCA ONH3OCTBIO X IIOBEPXHOCTH pa3jena MIH CBOGOAHON NOBEPXHOCTH, CBA3AHHOH CO
BKJIOCHHEM HJIH HOJIOCTBIO H IO3TOMY NpPEACTaBIAOT U3 cela addexThl rpanuumMoro cnos. IMokasartens
KOHLEHTpalMy HANPSKCHHA, BLIYMCICHHBI! HAa OCHOBAHMM HANDAXEHHUN DPACTSDKEHHH BOKDYr MOJIOCTH,
OKa3LIBaeTCA B GONBLIOM OTKIOHCHHH OT KJIACCHYECKOTO 3HAYCHHS BEJTMUHBI.



